Skip to main content

Prediction Guard

This page covers how to use the Prediction Guard ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Prediction Guard wrappers.

This integration is maintained in the langchain-predictionguard package.

Installation and Setupโ€‹

  • Install the PredictionGuard Langchain partner package:
pip install langchain-predictionguard
  • Get a Prediction Guard API key (as described here) and set it as an environment variable (PREDICTIONGUARD_API_KEY)

Prediction Guard Langchain Integrationsโ€‹

APIDescriptionEndpoint DocsImportExample Usage
ChatBuild Chat BotsChatfrom langchain_predictionguard import ChatPredictionGuardChatPredictionGuard.ipynb
CompletionsGenerate TextCompletionsfrom langchain_predictionguard import PredictionGuardPredictionGuard.ipynb
Text EmbeddingEmbed String to VectoresEmbeddingsfrom langchain_predictionguard import PredictionGuardEmbeddingsPredictionGuardEmbeddings.ipynb

Getting Startedโ€‹

Chat Modelsโ€‹

Prediction Guard Chatโ€‹

See a usage example

from langchain_predictionguard import ChatPredictionGuard

Usageโ€‹

# If predictionguard_api_key is not passed, default behavior is to use the `PREDICTIONGUARD_API_KEY` environment variable.
chat = ChatPredictionGuard(model="Hermes-3-Llama-3.1-8B")

chat.invoke("Tell me a joke")

Embedding Modelsโ€‹

Prediction Guard Embeddingsโ€‹

See a usage example

from langchain_predictionguard import PredictionGuardEmbeddings

Usageโ€‹

# If predictionguard_api_key is not passed, default behavior is to use the `PREDICTIONGUARD_API_KEY` environment variable.
embeddings = PredictionGuardEmbeddings(model="bridgetower-large-itm-mlm-itc")

text = "This is an embedding example."
output = embeddings.embed_query(text)

LLMsโ€‹

Prediction Guard LLMโ€‹

See a usage example

from langchain_predictionguard import PredictionGuard

Usageโ€‹

# If predictionguard_api_key is not passed, default behavior is to use the `PREDICTIONGUARD_API_KEY` environment variable.
llm = PredictionGuard(model="Hermes-2-Pro-Llama-3-8B")

llm.invoke("Tell me a joke about bears")

Was this page helpful?